

Stacking sequence effect on the fatigue behavior of single lap shear bonded joints

Francis M.G. Ramírez, Luiz G. M. Lise, Andreas Baumann, Fabian Nowacki, Ilona Kunzler, Joachim Hausmann **OBJECTIVES**

Evaluation of the stacking sequence effect on the fracture and fatigue behavior of composite adhesively bonded joints using single lap shear specimens

Fatigue damage accumulation was described using a phenomenological approach based on stiffness degradation as a damage parameter

STATE OF THE ART

Pros and cons of bonded joints

+ Low stress concentrations on the bonded area compared to riveting

EXPERIMENTAL PROCEDURE

- + Capacity of joining dissimilar materials
- + Design flexibility
- + Allows repairs solutions in case of localized damage
- Sensitive to harsh environments
- Complex mechanism of failure

Stacking sequence effect

 P_{max}

- ✓ Under fatigue loading multidirectional laminates exhibit a strength decrease of about 20-40% in comparison with unidirectional laminates
- \checkmark The fiber's orientation at the adherend/adhesive interface plays an important role on fracture
- \checkmark The crack path usually grows through the plies adjacent to the adhesive layer

Fatigue damage model

Based on the stiffness evolution of a structural component under fatigue loading

Such models:

 \checkmark present a high sensitivity to damage progression

 \checkmark can be measured during testing

D: accumulated fatigue damage E_0 : initial stiffness E(N): current stiffness E_f : stiffness measured before total failure

Materials –

Substrates: multiaxial, non-crimp E-glass fiber fabrics with an epoxy resin system Adhesive: two-component epoxy-based adhesive system *SikaPower*® 880 Stacking sequences: **B** $[0^{\circ}/90^{\circ}/90^{\circ}]_{s}$ / **Q** $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_{2s}$

Single lap shear specimens

Fracture tests

Zwick testing machine / Rate=0.2mm/min

Fatigue tests

MTS servo-hydraulic testing machine Loading control / 7 Hz frequency / R = 0.1

RESULTS

Fatigue damage evolution

$$D(N) = 1 - \left(1 - \left(\frac{N}{N_f}\right)^{\alpha}\right)^{\beta}$$

N: fatigue number of cycles N_f : number of cycles to failure. α and β are the shape parameters

	B [0°/90°/90°/0°] _s	Q [0°/45°/90°/-45°] _{2s}
α	0.185	0.473
β	0.259	0.362
R ²	0.963	0.974

B [0°/90°/90°/0°]_s

Q [0°/45°/90°/-45°]_{2s}

CONCLUSIONS

 \checkmark The Q series exhibited a higher $P_{\rm u}$ (23%) due it's complex fracture path

✓ The stiffness degradation model proved to be accurate for describing the fatigue damage accumulation

ACKNOWLEDGEMENTS

✓ The B series presented a high stiffness degradation of 40%, while in the Q series, the stiffness only decreased by 5%.

✓ The B series fatigue life was significantly lower (77.5%) than the Q series

 \checkmark 0° layers at the interface are usually the locus of intra-laminar delamination and can accelerate failure

We acknowledge the support from Prof. Paul Geiß from the Workgroup Materials and Surface Technologies of RPTU Kaiserslautern-Landau in the specimen manufacturing

The project "FAnTeStick – Fatigue Analysis and Test Procedures for the Design of Bonded Joints" is funded by the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag (funding reference KK5003702EB0)

www.thefutureiscomposite.com

Leibniz-Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Straße 58, 67663 Kaiserslautern, Germany